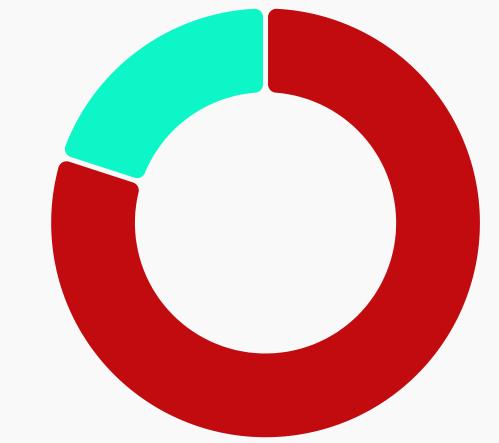


NAYA
THERAPEUTICS

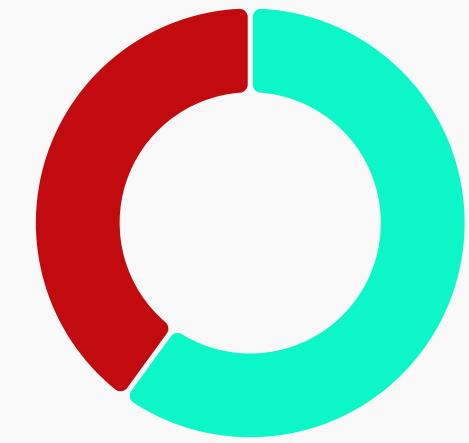
Pioneering the Next Generation of Cancer Therapies

Forward Looking Statement


This presentation contains forward-looking statements, including about our strategy, R&D plans, clinical and regulatory timelines, manufacturing, intellectual property, collaborations, market opportunities, and financial outlook. These statements are based on current assumptions and involve risks and uncertainties that could cause actual results to differ materially, including those related to drug development, regulatory approval, manufacturing and supply (including At-211), IP, competition, financing, and macro factors. We undertake no obligation to update these statements. This presentation is not an offer to sell or a solicitation of an offer to buy any securities.

NAYA Aims to Advance Outcomes in HCC & Multiple Myeloma Towards Cure

Despite Major Progress, Unmet Needs Remain for Deep, Durable Responses in Many Indications


Hepatocellular Carcinoma

75-85%

*Non-Responders to
Checkpoint Inhibitors*

Multiple Myeloma

30-50%

*of Responders to Chemo +
Immunotherapy are MRD Positive*

NAYA's Leadership In Transformational Astatine-211 (^{211}At) Targeted Alpha Therapies & Synergistic Immune-Cell-Engaging Bifunctional Antibodies with Early Clinical Value Inflection

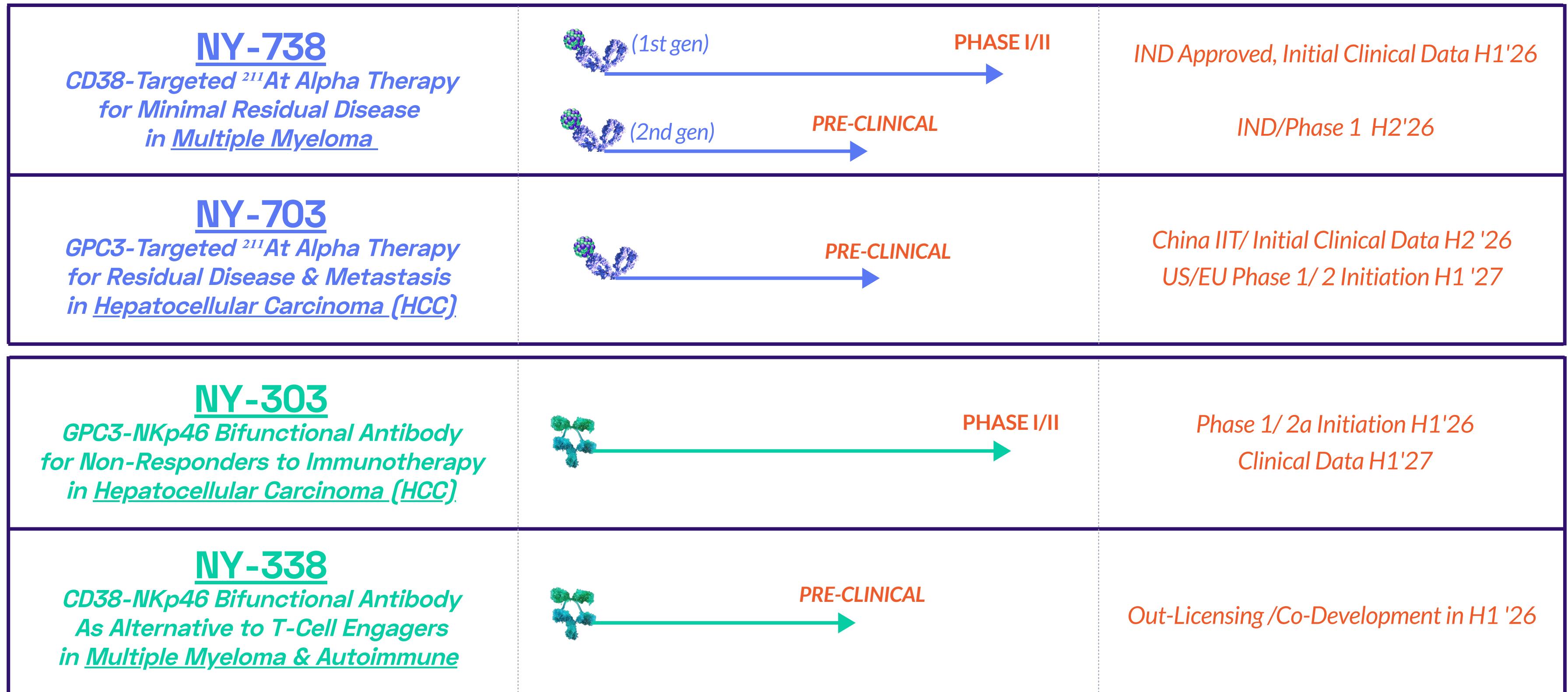
NAYA Positioned as ^{211}At Leader with Execution Edge in Decentralized Supply Chain

First-in-Class Clinical Pipeline Aims to Address Major Unmet Needs in Minimal Residual Disease (MRD) and Micrometastasis.

Synergistic, First-in-Class, Immune-Cell-Engaging Bifunctional Antibodies Drive Deep & Durable Responses

Positioned for Early Pharma Partnering With 2026-27 Clinical Value Inflection

De-Risked Clinical Pipeline With Validated GPC3 & CD38 Targets, Strong Preclinical Data, Competitive Target Product Profile



Ability to Accelerate Development Through US & European Strategic Hubs and China Access for Early Clinical Trials

Radiopharma & Bifunctional Antibodies in a Prime M&A/ Partnering Window for Early Clinical Stage Companies.

NAYA's Best-in-Class ^{211}At Targeted Alpha Therapy & Bifunctional Antibody Pipeline

Optionality to Scale the Both Modalities to Other Validated Targets/Indications

NAYA To Establish France-Based European Research & Manufacturing Hub

Leverages French Excellence & Leadership in Radiopharmaceuticals & Oncology

*NAYA Establishing Itself Globally with US Headquarters & French Hub,
Harnessing Leading Oncology Centers for Early Translational & Clinical Proof of Concept + GMP Manufacturing*

Decentralized GMP Manufacturing Sites to Support Clinical Trials in France & Europe

Pipeline Development for Alpha Therapies & Multispecific Antibodies

Strategic Partnerships With Leading Academic Institutions

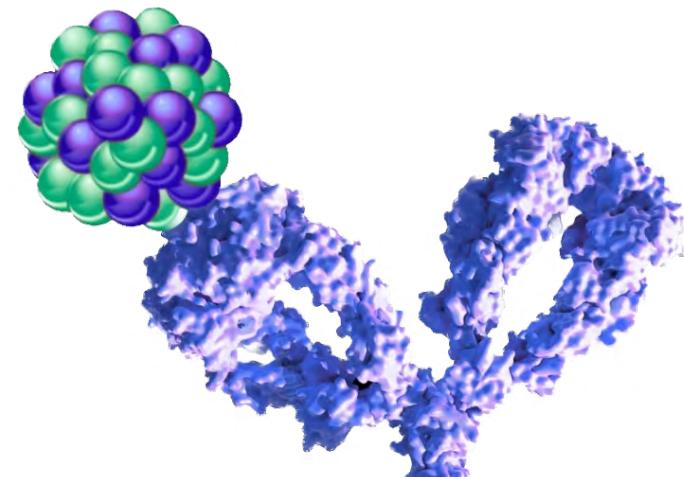
- **Gustave Roussy Cancer Center:** #1 in Europe, #4 Globally, Alpha Therapy & Oncology Clinical Trial Powerhouse
- **Nantes University/ INSERM:** Pioneer & Early European Leader in Radiopharm (Chemistry, Manufacturing, Clinical Trials)
- **Additional Partnerships** in France & Europe as Clinical Development Accelerates

Access to Non-Dilutive Capital & European Biotech Investors to Support US Co-Lead

NAYA To Leverage China Access to Accelerate Early Development and Clinical Data

Collaboration with Leading CDMO/CRO to Maintain Full Ownership & BD Upside

ALPHA NUCLIDE

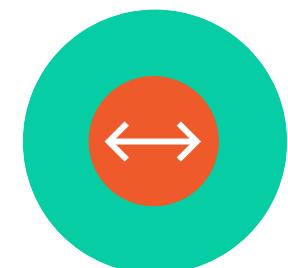

Alpha Nuclide Partnership Unlocks Access to China Market

- **Co-Founded by Yutian Feng, PhD** (Duke University), Leading Astatine-211 & Radiopharmaceutical Key Opinion Leader
- **Shanghai Production Center for China Clinical R&D** Ready for Operations
 - Houses TR-Alpha Cyclotron (First Specialized for Max. ^{211}At Production)
- Planning for **Network of Production Centers** for Full China Market Access

Tigermed CRO Collaboration Supports Early Clinical Trials in China

- **#1 Clinical CRO in China** with Global Footprint & Big Pharma Validation
- Large Local HCC Population (Over 200,000 New Cases Annually)
- Opportunity for Investigator-Initiated Clinical Trials in 2026
- Option to Scale Patient Recruitment as Part of Global Development Plan

Astatine-211 (^{211}At) Targeted Alpha Therapies


The Transformative Potential of Targeted Alpha Therapies

TATs Deposit Massive Amounts of Energy with Scalpel-Like Precision

High-Potency = Maximum Damage to Tumor Targets

A single alpha particle can be enough to kill a cancer cell, while it takes hundreds of hits from a beta particle to do so.

Short-Range = Minimal Damage to Surrounding Healthy Tissue

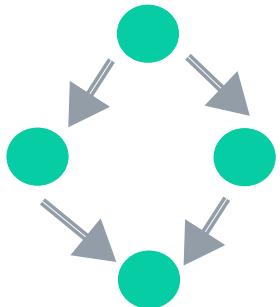
Alpha particles deposit their energy within a focused 2-3 cell diameter (50-100 micrometers vs. several mm for betas), enabling highly-localized killing

Targeting Vectors = Increased Precision & Specificity

TATs combine radioisotopes with targeting vectors (such as an antibody or peptide) to help guide them towards specific cancer cells

This combination of properties makes TATs particularly well-suited to improve clinical outcomes for patients at risk of residual & metastatic cancer.

Astatine-211: The Clean, Next-Generation "Goldilocks" Emitter


²¹¹At's Absence of Secondary Alpha Decay Radioactivity is Key in Maximizing Its Cancer Killing Energy & Efficiency

Short Half-Life (7.2h)

Minimal Unwanted Exposure to Radiation

Clean Decay Chain
(No Secondary Emissions)

Minimal Off-Target Toxicity

Chelatorless Covalent Chemistry

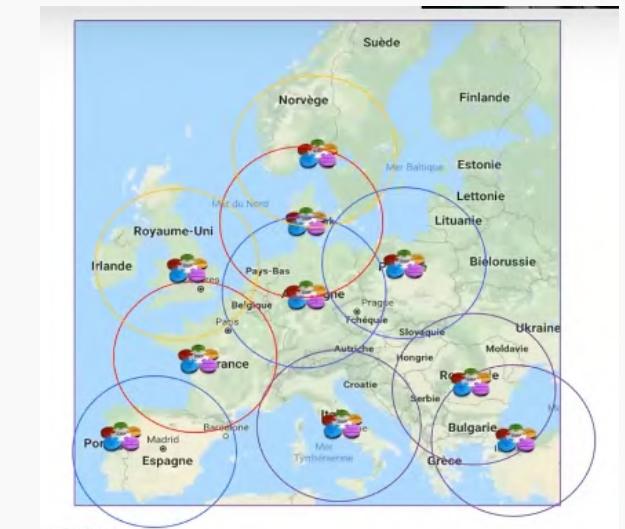
Simplified Drug Design & Conjugation

Production from Naturally-
Abundant Bismuth-209

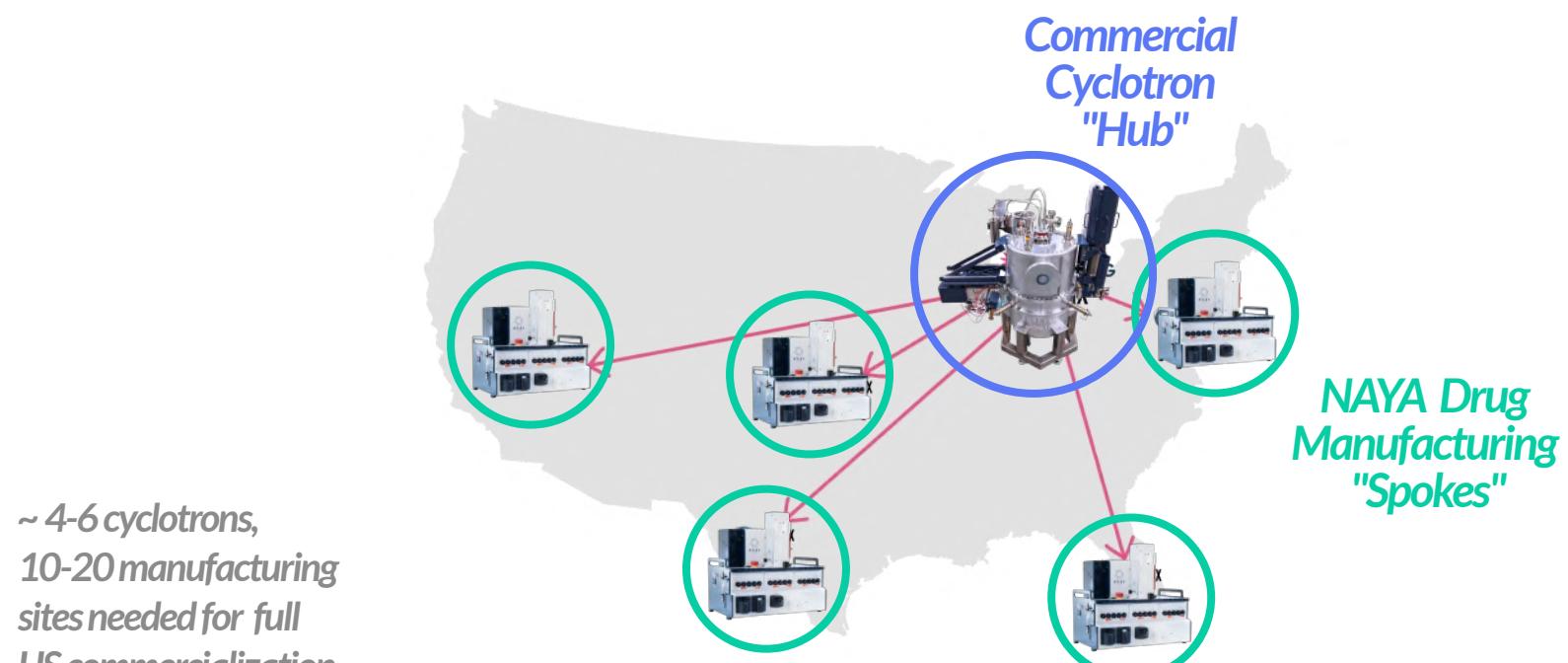
Reliable & Highly-Scalable Supply

Unlocking ²¹¹At's Availability: The Key to Its Therapeutic Breakthrough

NAYA Partnering with Key Players to Establish Leading Decentralized ²¹¹At Global Supply Network


"The perspective among many researchers and clinicians is that ²¹¹At would be the most important α -particle emitting radionuclide if it were widely available. "

Prof. Michael R. Zalutsky


Department of Radiology, Duke University Medical Center

- ²¹¹At's unique properties make it a highly-attractive alpha emitter, but supply has until now been limited to academic centers
- ²¹¹At's short half-life - a key therapeutic advantage - makes centralized global production a challenge
- A decentralized, hub & spoke supply chain overcomes this hurdle
- NAYA is quickly establishing partnerships with both Astatine-211 & therapeutic-dose production sites in major metropolitan areas across the US, Europe, and Asia to ensure reliable patient access to ²¹¹At therapies
- Early-mover advantage is key: securing preferred supply-chain access creates barrier to entry for followers

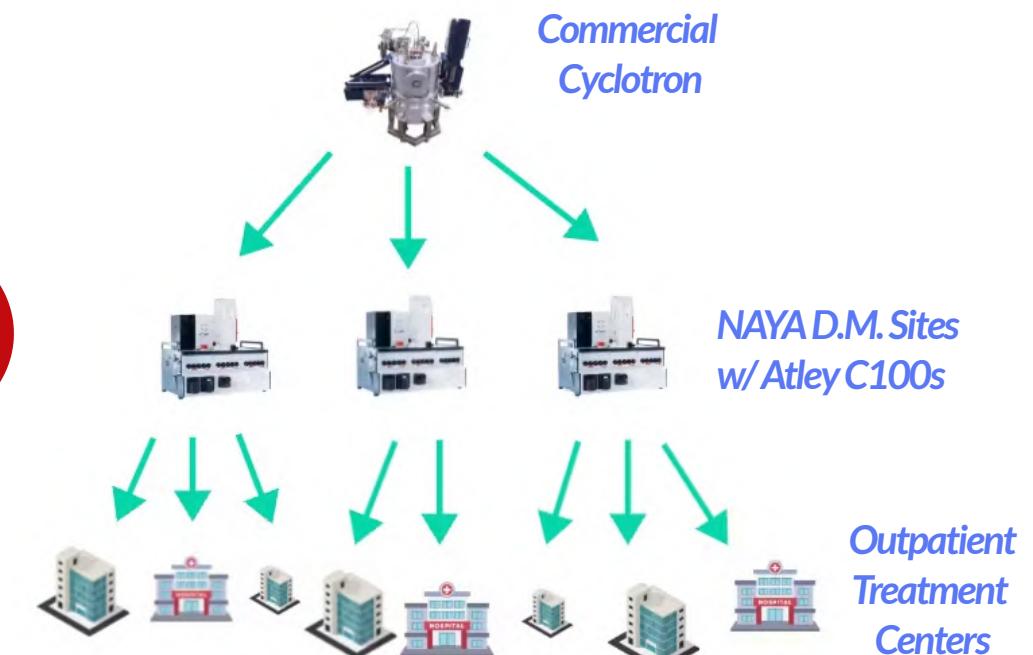


NAYA's Decentralized Hub & Spoke Supply Chain Unlocks Global Access to ²¹¹At Therapeutics

Illustrative US ²¹¹At Supply Network

NAYA Partnering with Commercial Cyclotron Companies for Reliable Global ²¹¹At Supply

NAYA Establishing Decentralized Drug Manufacturing Sites Using Breakthrough Atley C100 Machine


Current Supply Chain

(Specialized Academic Centers)

1 Cyclotron Supplies 1 Treatment Center

VS.

1 Cyclotron Supplies Efficient, Scalable Network of Treatment Centers

Cyclotrons Are Costliest Part of the ²¹¹At Supply Chain - Turning Each One Into a "Hub" Allows for Drastically Expanded Reach

Recent Pb-212 Clinical Data Validates Power of Short Half-Life Targeted Alpha Therapies

Pb-212 Clinical Candidates Compare Favorably to Actinium & Lutetium as Best-in-Class TAT

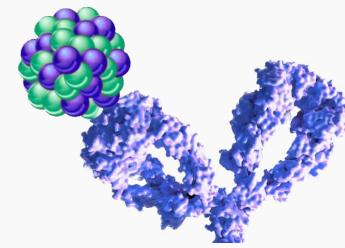
61 Patients in Phase 2a

*SSTR-targeted alpha therapy using Pb-212
for Neuroendocrine Tumors (GEP-NETs)*

60% ORR
in RLT Naive (N=35)

34.6% ORR
in RLT Exposed (N=26)

22 Patients in Phase 1b

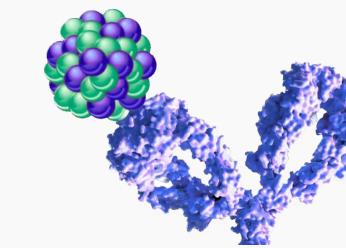

*PSMA-targeted alpha therapy using Pb-212
for Prostate Cancer (mCRPC)*

80% PSA50 response
at doses ≥ 160 MBq

100% ORR
*in patients with RECIST-measurable lesions,
including two CR*

NAYA Initiating 2026 Clinical Trials to Establish ²¹¹At as Optimal, Next-Generation TAT

NAYA's GPC3 & CD38-Targeting ²¹¹At Candidates Aiming for Best-in-Class in HCC & Multiple Myeloma



NY-703

GPC3-Targeting ²¹¹At Targeted Alpha Therapy
Addressing the 50-75% Recurrence Rate
Post-Surgery/Immunotherapy in HCC

2026 Phase Ib IIT
Shanghai, China (n=20)

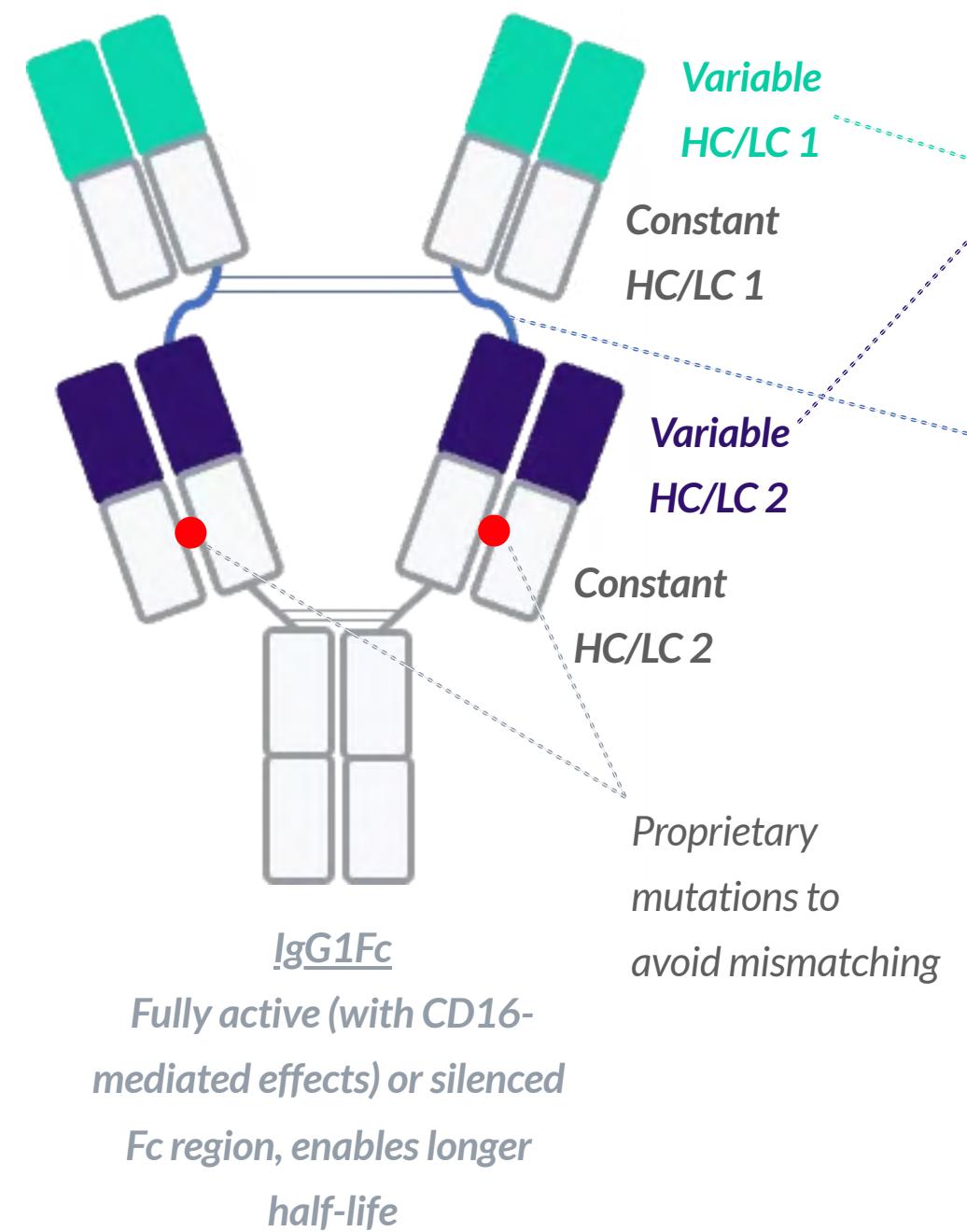
2027 Phase IIa
EU/US (n=60)

NY-738

CD38-Targeting ²¹¹At Targeted Alpha Therapy
Addressing the Up To 50% MRD+ Rate
at Every Line of Multiple Myeloma Treatment

1st generation
US IND approved, 2026 Clinical Data

2nd generation
(highly-differentiated NAYA/INSERM antibody & linker)
2026 IND

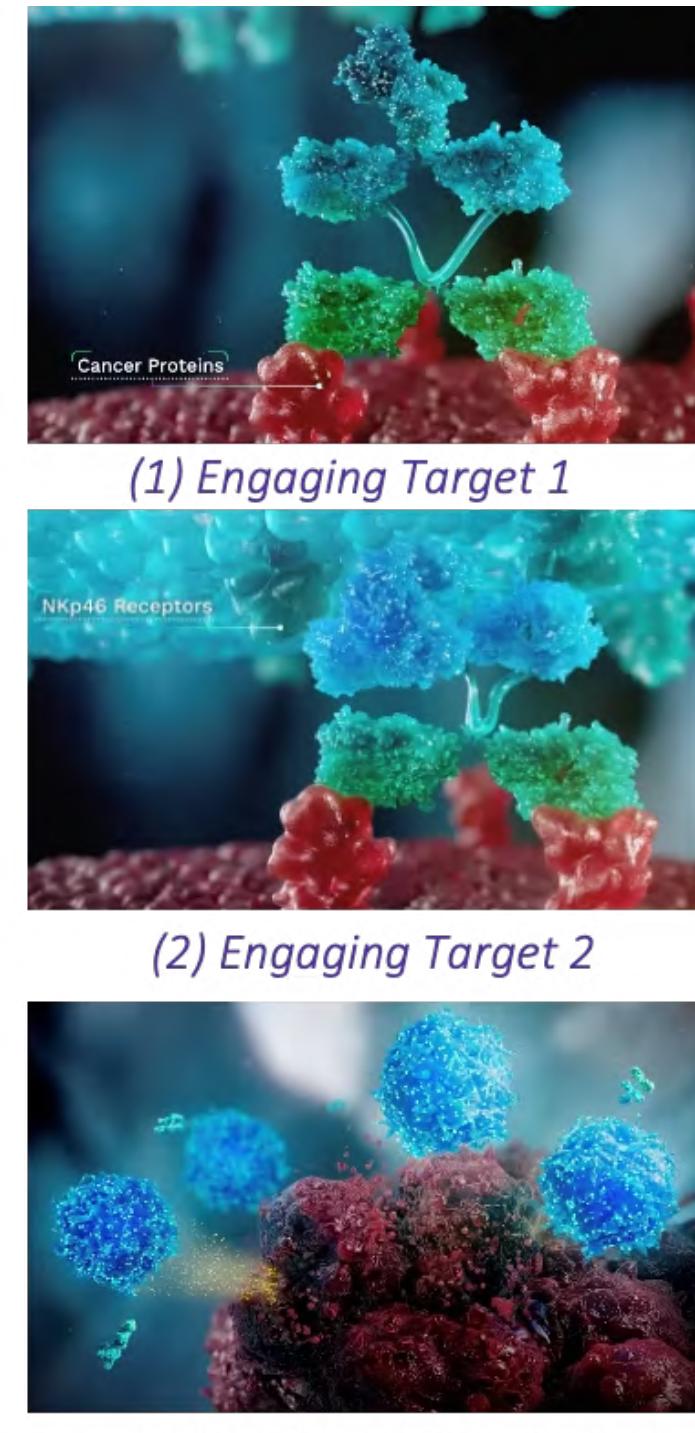

Flex-NK™ Bifunctional Antibodies

NAYA's Plug & Play Bifunctional Antibody Construct Promotes Avidity & Immunological Synapse Effect, Enhancing Precision Tumor Killing

Natural Bivalent Design
allows for binding affinities at levels comparable to native monoclonal antibodies

Distal FAB 1
Binds to Tumor or Vascular Target: GPC3, CD38, VEGF

Proximal FAB 2
Binds to Tumor or Immune-effectors: Nkp46, PD-1



Plug & Play of Variable HC/LC
parts enable faster development

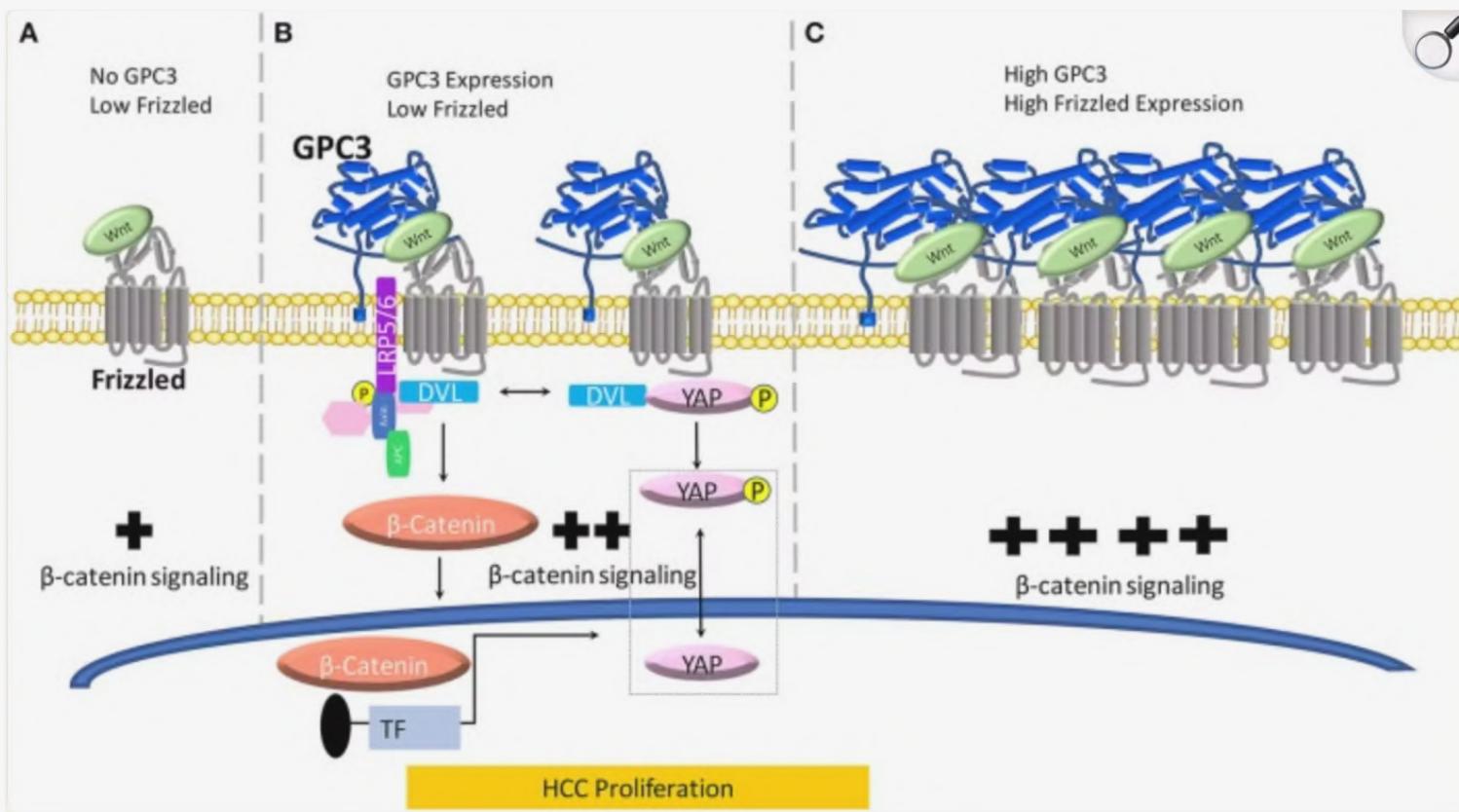
Proprietary FLEX Linkers Enable:

- Simultaneous binding to targets 1 & 2
- Biological synapse in TME
- Higher stability due to connecting disulfide bridges

Validated Manufacturability:
STC Biologics (Newton, MA)

[Watch Full Video](#)

Flex-NK™ Cell Engagers Show Significant Advantages Over T-Cell Engagers


NKp46 Activation Unlocks Immunotherapy Efficacy Across Tumors & Targets

	T-Cell Engagers (TCEs)	Flex-NK™ Engagers (FNKEs)
Mechanism of Action	T-Cell Redirection via CD3	<i>NK Cell Redirection via NKp46 & CD16, Tumor Cell Apoptosis & Serial Killing via NKp46</i>
Safety (CRS & Neurotoxicity)	High Risk	<u>Minimal Risk</u>
Immune Exhaustion Risk	High T-Cell Exhaustion, <i>Resulting in Limited TCE Activity</i>	<u>Low NK Cell Exhaustion</u> , <i>FNKEs Remain Active even when T-Cells Exhausted</i>
Resistance via Antigen Loss	Yes	<u>Limited</u> , <i>Broad NKp46 Activity Across Tumor Types & Targets</i>
Activity in Solid Tumor TME	Inconsistent	<u>Promising</u> <i>(Based on NKp46 Expression & Activity)</i>
Stage of Development	Late Clinical Stage & Commercial	<u>Early Clinical Stage</u>

First-in-Class GPC3/NKp46 Bifunctional Antibody Turns Immune-Cold Tumors Hot Through GPC3, Activates Durable NK Cell Tumor Killing Through NKp46

Synergistic Effect of Targeting Highly Tumor-Specific GPC3 & Best-in-Class Immune Cell Engager NKp46

GPC3 Turns Cold Tumors Hot *Dampens Wnt- β -Catenin Signaling in TME, Overcomes CPI Resistance*

NKp46 Drives Deep, Durable Response *Receptor Biology (Not Just Half-Life) Critical to Pharmacodynamic Effect*

- Activates NK cells for serial killing of tumor cells
- Improves NK cell trafficking to TME
- Induces reversal of NK cell functional exhaustion
- Increases cytotoxicity & compensates for CD16 low-expression through dual-trigger signaling with CD16
- Pharmacodynamic effects last 10+ days from single dose
- Expressed consistently across hematological & solid tumors
- Validated clinical data (IPH6101) supports FDA fast-track

Global Phase I/Ia of NY-303 as HCC Monotherapy for Non-Responders to PD-1+/- VEGF Inhibitors to Evaluate Safety, Response, and Disease Progression

Hadassah Hospital, Jerusalem

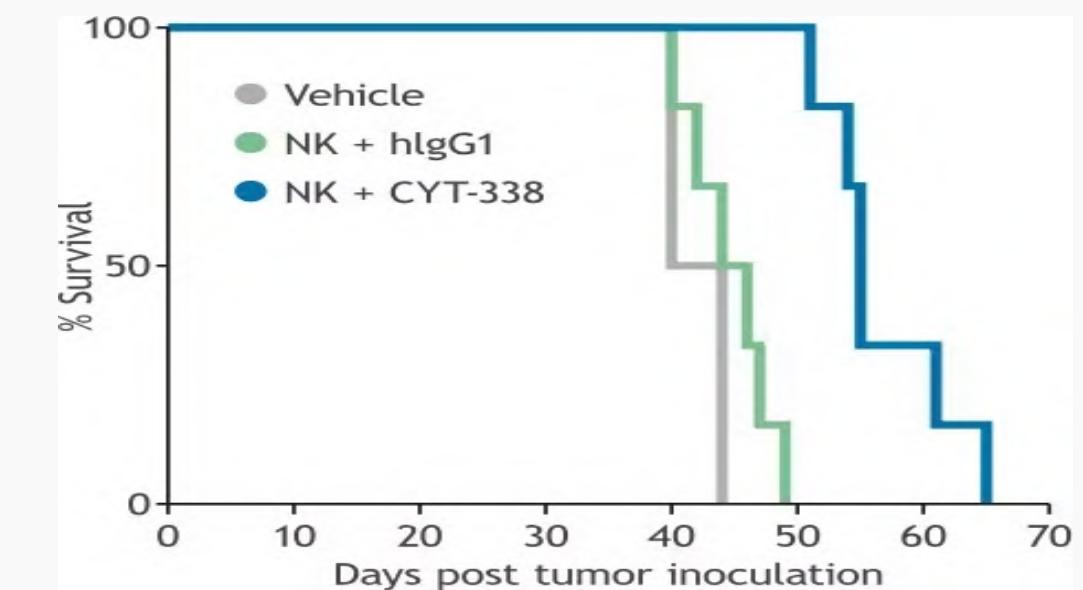
Sheba Medical Center, Tel Aviv

Sourasky Medical Center, Tel Aviv

Initiation of Clinical Trials Cleared to Enroll Patients in Israel (15-20 Patients)

Global Expansion to Include Up To 50 Additional Patients in US, EU, and Asia Starting in 2026

Endpoints to include safety, pharmacokinetics, activity markers, preliminary clinical efficacy (Overall Response Rate), and time-to-progression (Progression-Free Survival)


Key Opportunities for Accelerated Regulatory Pathway, Unlocked Asset Value, Pharma Licensing/M&A with 30+% Overall Response Rate & Improved Progression-Free Survival

NY-338 Highly-Differentiated from Daratumumab & T-Cell engagers

In Vitro & In Vivo Data Presented at ASH & EHA

- Distinct Epitopes from Daratumumab
- No NK Cell Fratricide Effect, No Effect on Other Immune Subsets
- Reverses NK Cell Dysfunction, Enhancing Killing Power
- No Cytokine Release Syndrome

Overall Survival (OS)

Liang Lin et. al. 2022 EHA Conference

NY-338 (CD38/NKp46) + BCMA TCE Competitively Positioned

CD38/NKp46 + BCMA TCE Reduces Both Antigen Escape & T-Cell Exhaustion Without Sacrificing Depth

	<u>CD38/NKp46 +BCMA TCE</u> (NAYA)	<u>CD38/BCMA /CD3</u> (Abbvie)	<u>Daratumumab + BCMA TCE</u> (J&J)	<u>BCMA TCE Alone</u> (J&J, Pfizer, Regeneron)
Durable Efficacy	<u>Very High</u>	<u>Very High</u>	High	Medium/High
Orthogonal Killing (NK+T)	<u>Strong</u>	None	<u>Partial</u>	None
Fratricide/Immune Depletion	<u>Low</u>	Moderate	Significant	<u>Minimal</u>
Immune Cell Exhaustion	<u>Lower</u>	Higher	Moderate/High	Highest
Antigen Escape	<u>Low</u>	<u>Lowest</u>	Moderate	Highest
CRS/Neurotox	<u>Moderate</u>	High/ Very High	High	High

* subject to confirmation in clinical trials

NY-338 Clinical Development Plan Targeting Initial Clinical Proof of Concept in 2027

2026 Phase 0 Translational Study

*Patient samples post-
Daratumumab,
BCMA TCE, or CAR-T*

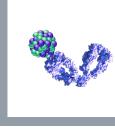
2027 Phase 1b Monotherapy

*Dose escalation with
CD38/NKp46 in post-
BCMA TCE*

2027 Phase 1b Combo with TCE

*Lead-in with
CD38/NKp46,
BCMA TCE
Step-Up*

2028 Phase 2a Expansion

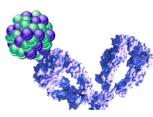

*Single arm combo vs.
TCE alone to evaluate
depth & durability
(MRD negativity,
preliminary PFS)*

Corporate Considerations

NAYA's Unicorn Potential Supported By Strong Market Valuations of Bifunctional Antibody & Targeted Alpha Radioimmunotherapy Companies

	IGI ICHNOS GLENMARK INNOVATION Collaboration propels innovation	abbvie	CD38/BCMA/CD3 T-Cell Engager Phase I	Global License by Abbvie for \$700M upfront + \$1.2B milestones Phase I Data demonstrates 79% CR in 35 heavily pre-treated patients
Merus			EGFR/LGR5 Bispecific Antibody Ongoing Phase III	Acquired by Genmab for \$8B
			GPC3 T-Cell Engager Pre-Clinical	Global License by Ipsen for \$610M

			Targeted Alpha Therapy Phase I	\$300M Investment at \$1.9B Post-Money
			Targeted Alpha Therapy Phase I Ongoing	\$1B+ IPO (Post-Money)
			Targeted Alpha Therapy Phase II	Fusion Acquired by AstraZeneca for \$2B + \$400M in Milestones
			Targeted Alpha Therapy Pre-Clinical	Mariana Acquired By Novartis for \$1B Upfront + \$750M in Milestones, Prior Novartis Acquisitions of Endocyte & AAA
			Targeted Alpha Therapy Phase I (GPC3/Ac-225)	RayzeBio Acquired by BMS for \$4.1B


** based on Glycomimetics-Crescent post-money merger ratio of 3.1% / 96.9% &

Glycomimetics closing price of \$0.25 from 12/31/24

*** based on company press releases (hyperlinked)

NAYA's Leadership In Transformational Astatine-211 (^{211}At) Targeted Alpha Therapies & Synergistic Immune-Cell-Engaging Bifunctional Antibodies with Early Clinical Value Inflection

NAYA Positioned as ^{211}At Leader with Execution Edge in Decentralized Supply Chain

First-in-Class Clinical Pipeline Aims to Address Major Unmet Needs in Minimal Residual Disease (MRD) and Micrometastasis.

Synergistic, First-in-Class, Immune-Cell-Engaging Bifunctional Antibodies Drive Deep & Durable Responses

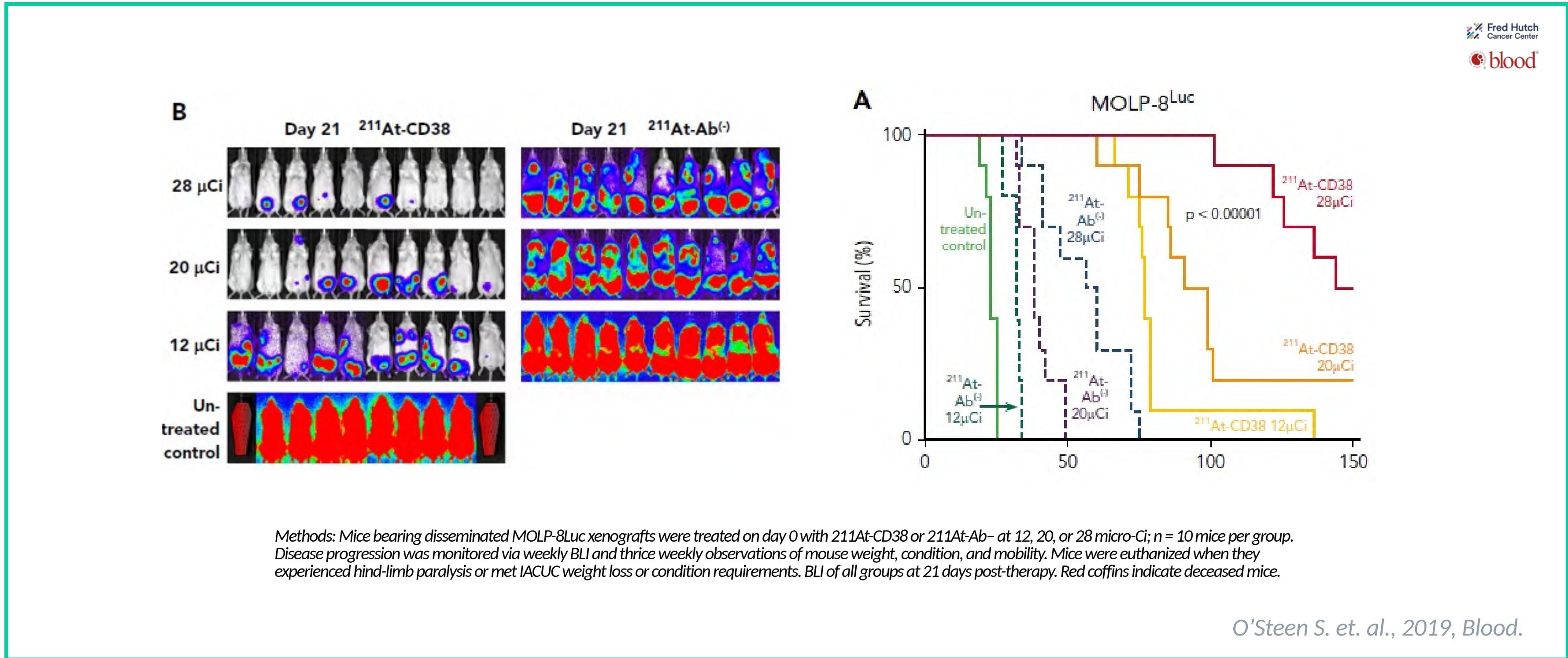
Positioned for Early Pharma Partnering With 2026-27 Clinical Value Inflection

De-Risked Clinical Pipeline With Validated GPC3 & CD38 Targets, Strong Preclinical Data, Competitive Target Product Profile

Ability to Accelerate Development Through US & European Strategic Hubs and China Access for Early Clinical Trials

Radiopharma & Bifunctional Antibodies in a Prime M&A/ Partnering Window for Early Clinical Stage Companies.

Appendix


Astatine-211 Shows Significant Advantages Over Actinium-225 & Lead-212

Recent Clinical Data With OranoMed's SSTR-targeting Lead-212 TAT Supports Comparable Efficacy for Short Half-Life Emitters Compared to Actinium-225

	<u>Actinium-225</u>	<u>Lead-212</u>	<u>Astatine-211</u>
<u>Half-Life</u>	9.9 days	10.6h	7.2h
<u>Decay</u>	Unfavorable (4 Daughters)	Moderate (2 Daughters)	Favorable (No Daughters)
<u>Risks</u>	Significant	Average	Minimal
<u>Chemistry:</u>	Complex, Bulky	Complex, Bulky	Chelatorless
<u>Production Source</u>	Limited Supply	Limited Supply	Naturally-Abundant (209-Bi)
<u>Cost Effectiveness</u>	Medium	Medium/ High	High
<u>Dependable, Scalable Supply</u>	Medium	Medium	High
<u>Theranostics/Imaging</u>	Challenging	Yes	Yes

²¹¹At-CD38 Therapy Demonstrates In Vivo Efficacy in Disseminated Multiple Myeloma

²¹¹At-CD38 Antibody Therapy Demonstrates Potent Anti-Tumor Responses In Vivo With Improved Survival in Murine Models

CD38-Targeted ^{211}At Alpha Therapies Aim to Eradicate MRD in Multiple Myeloma

MRD+ Consolidation Post-Dara and/or TCE Response is a Wide-Open Opportunity

- MRD (Minimal Residual Disease) is an FDA-recognized clinical endpoint, increasingly used in trials & clinical practice
- Deeper MRD negativity correlates with longer PFS/OS
- Alpha-radioimmunotherapy with ^{211}At has preclinical evidence of eradicating residual MM clones in MRD settings
- Uses short-path, high-LET killing that delivers localized killing with minimal marrow exposure
- Does not compete directly with daratumumab, immune cell engagers, or CAR-T cells (*alpha consolidation where mAbs plateau*)
 - MRD consolidation post-quadruplet therapy (including CD38 mAb)
 - post-relapse MRD/low-burden windows (after TCE bispecifics)
 - Delays or avoids CAR-T, option post BCMA CAR-T response but MRD+ and T-cells exhausted
- \$2B sales potential in Myeloma MRD consolidation + \$1B in AML/Lymphoma MRD

First in Human Study of a Marrow-Sparing CD38-Targeted ^{211}At for MRD+ Consolidation

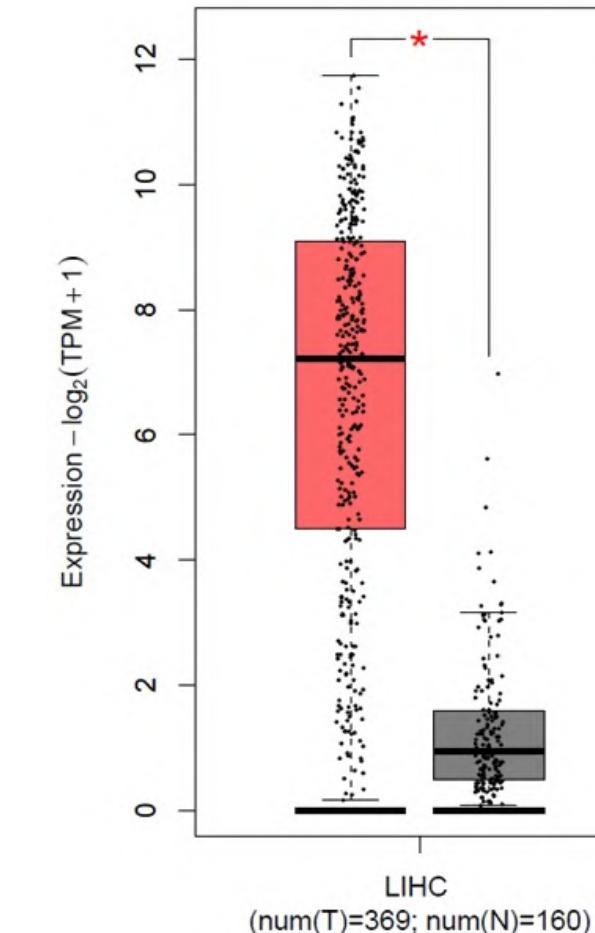
Post-Daratumumab/TCE in Multiple Myeloma - Data Readout by End of 2026

1st-Generation Product: ^{211}At -CD38

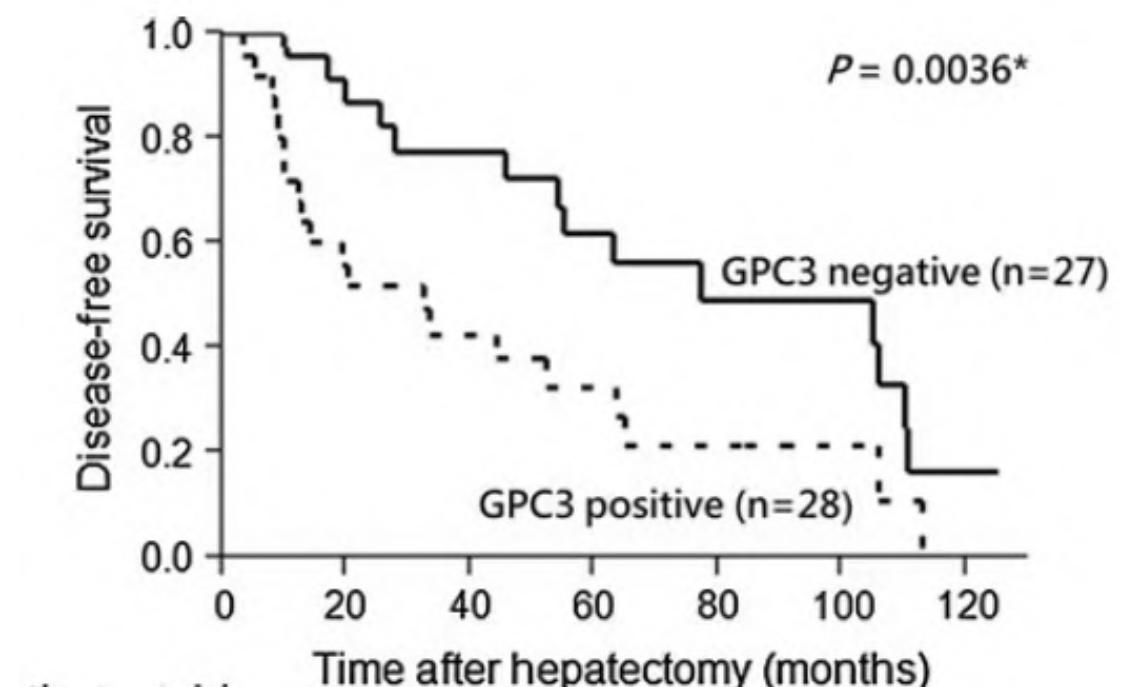
- IND-Cleared, Phase 1 to Initiate in H1 2026
 - Target Patients: 15
 - Daratumumab Partial or Complete Responders with MRD+ by NGS or high-sensitivity flow, pre-CAR-T or ASCT
 - Low disease burden, adequate marrow reserve, CD38+ residual clone expression
 - Regimen: Outpatient IV administration, Single dose escalation (option for second dose)
 - Primary Endpoints: Safety/ marrow tolerability (DLT-driven RP2D), MRD negativity rate
 - Secondary/Exploratory Endpoints: Sustained MRD-, Progression Free Survival, Time-to-CAR-T

2nd-Generation Product: ^{211}At -CD38 (Fab')2

- Targeting IND & phase 1 initiation in early 2027
- Highly-differentiated CD38 fragment targeting different epitopes than Daratumumab, no fratricide or immune impact
- Format further minimizes marrow exposure and preserves kidney function
- Proprietary linker to ensure stability


GPC3 is a Therapeutic Target in Hepatocellular Carcinoma

Currently Under Investigation in Clinical Trials


Glypican 3 (GPC3) is a cell surface protein playing a biological role in driving tumorigenesis in HCC

GPC3 is selectively expressed on tumor cells and is absent in normal tissue

GPC3 expression in early HCC is associated with poor 5-year disease free survival (27% vs 62%)

Major Pharma Companies with GPC3-Targeted Therapies in Clinical Development Include:

Additional indications for GPC3 include: NSCLC, Hepatoblastoma, Wilms Tumor, Malignant Rhabdoid Tumor, Yolk Sac Tumor, Rhabdomyosarcoma, Liposarcoma.

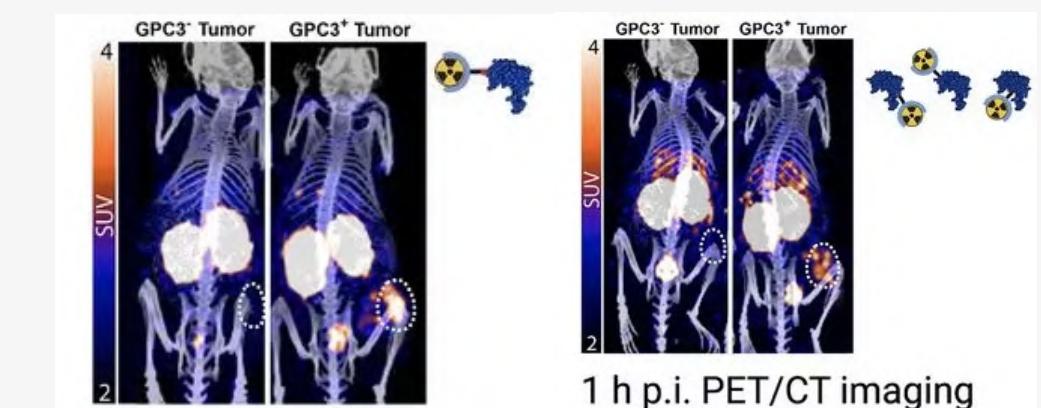
NAYA Harnesses Early Validation of GPC3 as Optimal HCC Target While Creating First/Best-in-Class Opportunities with Highly-Differentiated Candidates

<u>Modality</u>	<u>Leaders</u>	<u>Target Indication</u>	<u>Clinical Setting</u>	<u>Additional Comments</u>
<u>CAR-Ts</u>	AstraZeneca	<i>Late-Stage Refractory HCC</i>	Academic Centers	<i>High Response Rate (75% @ DL4) & Disease Control (91.4%), But Unfavorable Safety Profile</i>
<u>ADCs</u>		<i>Bulky Tumors Post-Immunotherapy</i>	Outpatient	<i>Payload Toxicity</i>
<u>T-Cell Engagers</u>		<i>Non-Responders to First-Line Immunotherapy</i>	CRS Surveillance	<i>Limited Efficacy to Date, Restricted to Low CRS Risk Patients</i>
<u>Actinium-225 TAT</u>		<i>Risk of Metastasis & Residual Disease</i>	Radiation Surveillance	<i>Strong Pre-Clinical Data, Marrow-Hepatic Toxicity Risk, Limited Supply</i>
<u>Astatine-211 TAT</u>		<i>Risk of Metastasis & Residual Disease</i>	Outpatient	<i>Optimal Safety & Patient Access. Best-in-Class Potential Harnessing Unique ²¹¹At Properties</i>
<u>Bifunctional NK Engager</u>		<i>Non-Responders to First-Line Immunotherapy</i>	Outpatient	<i>Optimal Safety & Patient Access. First-in-Class Potential Harnessing NKp46 + Unique MoA</i>

NY-703 Designed to Address HCC Residual Disease and Micro-metastasis

2026 Clinical Data to Validate Early-Mover ²¹¹At TAT Leadership

50-75% Recurrence Rate with Surgery or Immunotherapy


- Adjuvant/“MRD-focused” HCC after resection/ablation/TACE, GPC3-positive
- 2L+ Advanced HCC (post-IO), GPC3-high
- Pediatric expansion: relapsed/refractory hepatoblastoma (HB), GPC3-positive

Bayer & BMS Initiating Phase I Clinical Trials With ²²⁵Ac-GPC3 in HCC, Supported By Strong Pre-Clinical Data

Bristol Myers Squibb™

GPC3-Targeted Alpha Therapy Paired With ⁸⁹Zr Imaging Enables Precise Tumor Targeting & Low Off-Target Uptake

- Planning for Accelerated Development & 2026 Initial Clinical Data
- Best-in-Class Potential vs. Phase I Actinium-225/GPC3 Radioligands (Bayer, RayzeBio/BMS)
- \$3+ Billion Peak Sales Potential

Combination/Sequencing of CD38 Antibodies & BCMA T-Cell Engagers Required for Deep & Durable Response

Builds & Expands on Established Clinical Proof of Concept for Daratumumab + TCE (ASH '25)

“Debulk then Redirect” Sequencing Approach (NK-Engager followed by T-Cell Engager)

Provides Immediate NK Killing Without Continuous T-Cell Pressure

- Reduces suppressive pressure of CD38 mAb maintenance (distinct CD38 epitope with no fratricide and no effect on immune subset)
- Improves immune synapse quality for subsequent CD3 redirection,
- Provides immediate innate killing while T cells expand/activate under BCMA \times CD3.
- Complementary resistance coverage :
 - BCMA \times CD3 resistance: antigen loss, T-cell exhaustion, impaired synapse, inhibitory cytokine milieu.
 - NKp46 activation reactivates exhausted NK cells; limited shedding unlike NKG2D and CD16